New proof of Weyl ’ s theorem ∗ †
نویسنده
چکیده
Let lu = −u + q(x)u, where q(x) is a real-valued L 2 loc (0, ∞) function. H. Weyl has proved in 1910 that for any z, Imz = 0, the equation (l − z)w = 0, x > 0, has a solution w ∈ L 2 (0, ∞). We prove this classical result using a new argument.
منابع مشابه
A new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملCommon xed point theorem for w-distance with new integral type contraction
Boujari [5] proved a fixed point theorem with an old version of the integraltype contraction , his proof is incorrect. In this paper, a new generalizationof integral type contraction is introduced. Moreover, a fixed point theorem isobtained.
متن کاملAnother proof of Banaschewski's surjection theorem
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملA constructive proof of the Peter-Weyl theorem
We present a new and constructive proof of the Peter-Weyl theorem on the representations of compact groups. We use the Gelfand representation theorem for commutative C*-algebras to give a proof which may be seen as a direct generalization of Burnside’s algorithm [3]. This algorithm computes the characters of a finite group. We use this proof as a basis for a constructive proof in the style of B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001